一代材料,一代技术, 一代产业。半导体材料经过多年的发展,目前可以分为三代,形成了以硅为主,氮化镓、砷化镓、碳化硅等半导体新材料增强补充的产业局面:
Si、SiC、GaN性能比较
1、第一代半导体材料
- 特点:硅材料储量丰富、价格低廉、热性能与机械优良、易于生长大尺寸高纯度晶体等特点,处于成熟发展阶段。但硅材料的物理性质限制了其在光电子和高频高功率器件上的应用。
- 兴起时间:20世纪50年代
-
应用领域:消费电子、通信、光伏、军事以及航空航天等。
2、第二代半导体材料
-
兴起时间:20世纪70年代
-
特点:与硅相比,第二代半导体材料具有禁带宽度大、电子饱和漂移速度高、光电特性好、耐高温、抗辐射等特性。但由于GaAs、InP材料资源稀缺、大尺寸制备困难、价格昂贵、有毒性、污染环境,应用受到一定局限。 -
应用领域:卫星通讯、移动通讯、光通信和GPS导航等领域。
3、第三代半导体材料
- 特点:第三代半导体材料具备击穿电场高、热导率大、电子饱和漂移速率高、抗辐射能力强等优越性能
-
兴起时间:20世纪90年代
-
应用领域:新能源与智能电网领域、轨道交通与新能源汽车领域、5G通讯和物联网领域、光电子与显示领域、消费类电子和工业电机领域、航空航天与军工领域等。
目前研发较为成熟的材料是SiC和GaN等,其中氮化硼、氮化铝和金刚石等材料的研究则尚属于起步阶段。
半导体材料是器件研发的基础,半导体材料的发展必然要依赖于后期器件的开发应用,而器件的开发应用同时受制于材料的发展。半导体器件由同质结、异质结转向基于量子阱、量子线、量子点器件的设计与制造,这一转向改变了半导体材料的发展方向,在传统第一、第二代半导体材料发展的同时,加速发展宽禁带第三代半导体材料的趋势。
原文始发于微信公众号(艾邦半导体网):一文看懂半导体材料